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ABSTRACT

In tomographic image reconstruction from limited-view pro-

jections the underlying inverse problem is ill-posed with

the rank-deficient system matrix. The minimal-norm least

squares solution may considerably differs from the true so-

lution, and hence a priori knowledge is needed to improve

the reconstruction. In our approach, we assume that the

true image presents sparse features with uniform spacial

smoothness. The sparsity constraints are imposed with the

�p diversity measure that is minimized with the FOCUSS

algorithm. The spacial smoothness is enforced with the adap-

tive Wiener noise removing implemented in each FOCUSS

iterations. The simulation results demonstrate the benefits of

the proposed approach.

Index Terms— Tomographic image reconstruction, Lim-

ited data tomography, FOCUSS algorithm, Wiener noise re-

moving, Rank-deficient inverse problems

1. INTRODUCTION

When an angular range of projections in tomographic im-

age reconstruction is limited, the reconstructed images are

distorted with specific smeared artifacts that are often called

”ghosts” in the literature [1, 2]. Koltracht et al. [2] proved

that for borehole tomography (limited-view projections), the

nullspace of the forward projection operator is non-trivial,

which implies the non-unique inversion, and in consequence

the minimal-norm least-square solution may not be the true

solution.

In many cases of limited-view image reconstruction, the

ambiguity of the inversion and related artifacts are reduced by

suitable regularization that stabilizes the solution or improves
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it with some prior information. However, efficient regulariza-

tion of the solution is a very challenging task, and it requires

careful treatment of the prior information. In many cases,

the prior knowledge on the solution is limited, e.g. only to

a degree of smoothness or sparsity. In our approach we take

advantage of both kinds of prior information. The sparsity

constraints are imposed by using the �p diversity measure

as a regularization term, which leads to the FOCUSS algo-

rithm. The smoothness constraints are imposed by the adap-

tive Wiener noise removing (filtration) from each iterative up-

dates with the FOCUSS algorithm. This modification is easy

to implement and the related smoothness parameter can be

readily estimated.

2. MODEL

Assuming the forward projection model as the limited angle

Radon transform, a discrete approximation of the model can

be expressed by

Ax + n = b, (1)

where A = [aij ] ∈ R
M×N is the system matrix, x = [xj ] ∈

R
N is the unknown image vector, n = [ni] ∈ R

M is the

vector of errors or noisy perturbations, and b = [bi] ∈ R
M is

the vector of observations. The area of interest is uniformly

discretized into N square pixels, and probed along M ray-

paths (projections). We assume that the angular range of the

projections is limited to [0 π/2], and this implies rank(A) <
min{M, N} in spite of M ≥ N . Each entry aij represents

the contribution of the i-th ray-path to the j-th pixel.

Since the angular range of projections is considerably

limited, the inverse problem is severely ill-posed and the

nullspace N(A) is not trivial. Any solution x∗ to the

least square problem minx ||b − Ax||22 can be expressed

as x∗ = xLS + xn where xLS is the unique minimal-

norm least squares solution, which is generally non-sparse,

and xn ∈ N(A) represents any linear combination of the
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nullspace vectors. Thus some prior knowledge on the true

solution is needed to give preference to a certain class of the

solutions. Assuming the true image contains sparse features,

the sparsity constraints can be imposed to select the right

solution.

3. ALGORITHMS

A variety of computational strategies exists for finding sparse

solutions to systems of linear equations. Examples include

the BP [3], greedy algorithms [4], Iterative-Thresholding al-

gorithms [5], FOCUSS algorithm [6] and its extensions such

as FOCUSS-CNDL [7] or LORETA-FOCUSS [8].

The FOCUSS, which is based on Iteratively Reweighted

Least Square (IRLS) algorithm [9], has already found numer-

ous applications in neuro-imaging such as EEG/MEG [10],

where the inverse problems are linear, under-determined and

sparse. From a mathematical point of view such inverse prob-

lems have similar numerical properties (at least in the sense

of a non-trivial nullspace) as linear rank-deficient problems,

and this motivates the usage of the FOCUSS to image recon-

struction from limited-view projections.

3.1. Regularized FOCUSS algorithm

The problem of finding the sparse solution to the system (1)

can be formulated in terms of the following regularized least-

squares problem:

min
x

||Ax − b||22 + γE(p)(x) (2)

where γ controls a tradeoff between fitting to data and spar-

sity, and

E(p) = sgn(p)
N∑

j=1

|xj |p, p ≤ 1, (3)

is the �p diversity measure [6]. The parameter p affects a

degree of sparsity in x.

The regularized FOCUSS algorithm iteratively seeks sta-

tionary points of the objective function in (2) using the IRLS

algorithm [9]. The final form of the FOCUSS is given by Al-

gorithm 1 where λ = |p|
2 γ is a regularization parameter, and

IM ∈ R
M×M is an identity matrix.

3.2. Spacial smoothness constraints

The adaptive Wiener filtration [11] has been extensively used

in tomographic image reconstruction [12–14] to remove a

constant power Gaussian white noise. An example of using

the Wiener filtration for extracting brain evoked potentials

can be found in [15].

We propose to remove noisy disturbances from each it-

erative update x(k+1) using the pixelwise adaptive lowpass

Algorithm 1 (Regularized FOCUSS)

Set p ∈ [0, 2], % p-norm,
λ % regularization parameter,
Randomly initialize x(0),

For k = 1, 2, . . . , until convergence do
W k = diag

{
(|xj |(k))1−

p
2
}

,

x(k+1) = W 2
kAT

(
AW 2

kAT + λIM

)−1

b,

End

Wiener filter as follows

x
(k+1)
j ← μj +

σ2
j − ν2

j

σ2
j

(
x

(k+1)
j − μj

)
, (4)

μj =
1

L − 1

∑
n∈Nj

x(k+1)
n ,

σ2
j =

1
L − 1

∑
n∈Nj

(
(x(k+1)

n )2 − μ2
j

)
,

where μj and σ2
j are the local mean and variance around the

j-th pixel, respectively. The set Nj contains the indices of

the neighboring pixels around the j-th pixel, L is the total

number of pixels in the neighborhood, and ν2 is the mean

noise variance which is calculated as follows:

ν2 =
1
N

N∑
j=1

σ2
j . (5)

The nearest neighborhood Nj can be defined with the Markov

Random Field (MRF) model. Assuming the first- and second-

order interactions between cliques of pixels, we have L = 9.

In the experiments, we used the Wiener filter implemented in

Image Processing Toolbox from MATLAB 7.0.

4. RESULTS

In the simulation experiments we used the synthetic data

from borehole tomography [16] which is commonly used to

identify anomalies in the geophysical structure of a cross-

borehole section. The anomalies may result both from human

activity or natural lithologic processes, and are expected to

be sparse and smooth. An exemplary discrete representation

of the borehole tomographic image (phantom) is shown in

Fig. 1(a). The area is divided into 64 by 64 pixels, hence

N = 4096. The observations are obtained using regular

cross-borehole probing of the area of interest. The total

number of the probing ray-paths amounts to 4096. Thus

A ∈ R
4096×4096.

Since an angular range of the probing ray-paths is strongly

limited, the observations may be incomplete. The numeri-

cal rank of A evaluated in MATLAB 7.0 is equal to 3658.
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The minimal norm least squares solution (xLS) obtained

by orthogonal projection of the lexicographically vectorized

true image onto N(A) is illustrated in Fig. 1(b). Note that

the standard ART, SIRT, LSQR, or CGLS algorithms are

convergent to xLS only for consistent (noise-free) data. For

noisy data, the approximations obtained with these algorithms

would be even worse.
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Fig. 1. (a) Phantom image; (b) Minimal-norm least-squares

solution.

To reconstruct the image we used the standard and Wiener

filtered FOCUSS algorithms. Since the sparse reconstructed

images are also expected to be smooth, the parameter p should

not be equal to zero because this may cause the algorithm

easily gets stuck to local minima of the non-convex objec-

tive function in (2). We propose to choose typically p = 1,

which is equivalent to solving an equality constrained l1 prob-

lem. However, Linear Programming (LP) cannot be readily

applied here because our l1 problem is degenerate (A does

not have a full rank). For example, the large-scale primal-

dual interior-point method (Matlab’s optimization toolbox)

which is a variant of the Mehrotra’s predictor-corrector algo-

rithm cannot give satisfactory results for our problems. The

algorithms are tested with noise-free and zero-mean Gaussian

noisy data with SNR = 30 [dB].
The images reconstructed with both algorithms within 15

iterations are shown in Fig. 2. The regularization parameter

λ for noisy data has been estimated with the L-curve based

method given in [17]. For noise-free data we set λ to its lowest

boundary. The reconstructed images are also estimated quan-

titatively with the standard Root Mean Square Error (RMSE)

plotted in Fig. 3 versus the number of iterations.

Inclusion of the Wiener filtering to the FOCUSS itera-

tions nearly does not affect a total computational cost which

is mostly caused by a matrix inversion in the FOCUSS algo-

rithm. Obviously, this step can be relaxed by using linear iter-

ative solvers to approximate the term (AW 2
kAT +λIM )−1b.

We applied the Gaussian elimination in this step to get an ex-

act results. According to Matlab evaluation of elapsed time

one iterative step of the FOCUSS algorithm with and without

the Wiener filtration amounts to about 33.8 and 33.6 seconds,

respectively. The algorithms have been tested in Matlab 7.0

on PC (1GB RAM, Dual Core CPU, 1.7 GHz).
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Fig. 2. Images reconstructed with FOCUSS (p = 1, k = 15):

(a) noise-free data and without filtering, λ = 10−8; (b) noise-

free data and with adaptive Wiener filtering, λ = 10−8; (c)

noisy data (SNR = 30 [dB]) and without filtering, λ = 40;

(d) noisy data (SNR = 30 [dB]) and with adaptive Wiener

filtering, λ = 40.

5. CONCLUSIONS

In the paper, we propose to use the FOCUSS algorithm with

the adaptive Wiener filtering to enforce additional smoothness

constraints. As shown in Fig. 2(a) the image reconstructed

from noise-free data using the standard FOCUSS has a little

better quality (with relaxed vertical smearing artifacts) than

the solution xLS shown in Fig. 1(b). The usage of the Wiener

filtering [see Fig. 2(b)] enforces the image to be smoother (for

p = 1), and in this theoretical (noise-free) case the filering is

unnecessary. For smaller values of p, the filering gives some

slight improvements as shown in Fig. 3(a). However, if the

data are noisy (real data), the Wiener filtering is very impor-

tant and considerably improves the reconstruction – compare

Fig. 2(c) (without filtering) with Fig. 2(d) (with filtering), and

also Fig. 3(b).
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